Bag-of-visual-words expansion using visual relatedness for video indexing
Bag-of-visual-words (BoW) has been popular for visual classification in recent years. In this paper, we propose a novel BoW expansion method to alleviate the effect of visual word correlation problem. We achieve this by diffusing the weights of visual words in BoW based on visual word relatedness, w...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2008
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6476 https://ink.library.smu.edu.sg/context/sis_research/article/7479/viewcontent/1390334.1390495.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Bag-of-visual-words (BoW) has been popular for visual classification in recent years. In this paper, we propose a novel BoW expansion method to alleviate the effect of visual word correlation problem. We achieve this by diffusing the weights of visual words in BoW based on visual word relatedness, which is rigorously defined within a visual ontology. The proposed method is tested in video indexing experiment on TRECVID-2006 video retrieval benchmark, and an improvement of 7% over the traditional BoW is reported. |
---|