Person-level action recognition in complex events via TSD-TSM networks
The task of person-level action recognition in complex events aims to densely detect pedestrians and individually predict their actions from surveillance videos. In this paper, we present a simple yet efficient pipeline for this task, referred to as TSD-TSM networks. Firstly, we adopt the TSD detect...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2020
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6503 https://ink.library.smu.edu.sg/context/sis_research/article/7506/viewcontent/3394171.3416276.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | The task of person-level action recognition in complex events aims to densely detect pedestrians and individually predict their actions from surveillance videos. In this paper, we present a simple yet efficient pipeline for this task, referred to as TSD-TSM networks. Firstly, we adopt the TSD detector for the pedestrian localization on each single keyframe. Secondly, we generate the sequential ROIs for a person proposal by replicating the adjusted bounding box coordinates around the keyframe. Particularly, we propose to conduct straddling expansion and region squaring on the original bounding box of a person proposal to widen the potential space of motion and interaction and lead to a square box for ROI detection. Finally, we adapt the TSM classifier on the generated ROI sequences to perform action classification and further adopt late fusion to promote the prediction. Our proposed pipeline achieved the 3rd place in the ACM-MM 2020 grand challenge, i.e., Large-scale Human-centric Video Analysis in Complex Events (Track-4), obtaining final 15.31% wf-mAP@avg and 20.63% f-mAP@avg on the testing set. |
---|