Deformable object model matching by topological and geometric similarity

In this paper, we present a novel method for efficient 3D model comparison. The method is designed to match highly deformed models through capturing two types of information. First, we propose a feature point extraction algorithm, which is based on “Level Set Diagram”, to reliably capture the topolo...

全面介紹

Saved in:
書目詳細資料
Main Authors: TAN, Kwok-Leung, LAU, Rynson W. H., NGO, Chong-wah
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2004
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/6608
https://ink.library.smu.edu.sg/context/sis_research/article/7611/viewcontent/21710335.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:In this paper, we present a novel method for efficient 3D model comparison. The method is designed to match highly deformed models through capturing two types of information. First, we propose a feature point extraction algorithm, which is based on “Level Set Diagram”, to reliably capture the topological points of a general 3D model. These topological points represent the skeletal structure of the model. Second, we also capture both spatial and curvature information, which describes the global surface of a 3D model. This is different from traditional topological 3D matching methods that use only low-dimension local features. Our method can accurately distinguish different types of 3D models even if they have similar topology. By applying the bipartite graph matching technique, our method can achieve a high precision of 0.54 even at a recall rate of 1.0 as demonstrated in our experimental results.