Video clip retrieval by maximal matching and optimal matching in graph theory

In this paper, a novel approach for automatic matching, ranking and retrieval of video clips is proposed. Motivated by the maximal and optimal matching theories in graph analysis, a new similarity measure of video clips is defined based on the representation and modeling of bipartite graph. Four dif...

Full description

Saved in:
Bibliographic Details
Main Authors: PENG, Yu-Xin, NGO, Chong-wah, DONG, Qing-Jie, GUO, Zong-Ming, XIAO, Jian-Guo
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2003
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/6611
https://ink.library.smu.edu.sg/context/sis_research/article/7614/viewcontent/7965317.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:In this paper, a novel approach for automatic matching, ranking and retrieval of video clips is proposed. Motivated by the maximal and optimal matching theories in graph analysis, a new similarity measure of video clips is defined based on the representation and modeling of bipartite graph. Four different factors: visual similarity, granularity, interference and temporal order of shots are taken into consideration for similarity ranking. These factors are progressively analyzed in the proposed approach. Maximal matching utilizes the granularity factor to efficiently filter false matches, while optimal matching takes into account the visual, granularity and interference factors for similarity measure. Dynamic programming is also formulated to quantitatively evaluate the temporal order of shots. The final similarity measure is based on the results of optimal matching and dynamic programming. Experimental results indicate that the proposed approach is effective and efficient in retrieving and ranking similar video clips.