Automatic video summarization by graph modeling
We propose a unified approach for summarization based on the analysis of video structures and video highlights. Our approach emphasizes both the content balance and perceptual quality of a summary. Normalized cut algorithm is employed to globally and optimally partition a video into clusters. A moti...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2003
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6647 https://ink.library.smu.edu.sg/context/sis_research/article/7650/viewcontent/195010104.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | We propose a unified approach for summarization based on the analysis of video structures and video highlights. Our approach emphasizes both the content balance and perceptual quality of a summary. Normalized cut algorithm is employed to globally and optimally partition a video into clusters. A motion attention model based on human perception is employed to compute the perceptual quality of shots and clusters. The clusters, together with the computed attention values, form a temporal graph similar to Markov chain that inherently describes the evolution and perceptual importance of video clusters. In our application, the flow of a temporal graph is utilized to group similar clusters into scenes, while the attention values are used as guidelines to select appropriate sub-shots in scenes for summarization. |
---|