Pruning meta-trained networks for on-device adaptation
Adapting neural networks to unseen tasks with few training samples on resource-constrained devices benefits various Internet-of-Things applications. Such neural networks should learn the new tasks in few shots and be compact in size. Meta-learning enables few-shot learning, yet the meta-trained netw...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2021
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6702 https://ink.library.smu.edu.sg/context/sis_research/article/7705/viewcontent/cikm21_gao.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Adapting neural networks to unseen tasks with few training samples on resource-constrained devices benefits various Internet-of-Things applications. Such neural networks should learn the new tasks in few shots and be compact in size. Meta-learning enables few-shot learning, yet the meta-trained networks can be overparameterised. However, naive combination of standard compression techniques like network pruning with meta-learning jeopardises the ability for fast adaptation. In this work, we propose adaptation-aware network pruning (ANP), a novel pruning scheme that works with existing meta-learning methods for a compact network capable of fast adaptation. ANP uses weight importance metric that is based on the sensitivity of the meta-objective rather than the conventional loss function, and adopts approximation of derivatives and layer-wise pruning techniques to reduce the overhead of computing the new importance metric. Evaluations on few-shot classification benchmarks show that ANP can prune meta-trained convolutional and residual networks by 85% without affecting their fast adaptation. |
---|