Expressive bilateral access control for Internet-of-Things in cloud-fog computing
As a versatile system architecture, cloud-fog Internet-of-Things (IoT) enables multiple resource-constrained devices to communicate and collaborate with each other. By outsourcing local data and immigrating expensive workloads to cloud service providers and fog nodes (FNs), resource-constrained devi...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2021
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6739 https://ink.library.smu.edu.sg/context/sis_research/article/7742/viewcontent/3450569.3463561.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | As a versatile system architecture, cloud-fog Internet-of-Things (IoT) enables multiple resource-constrained devices to communicate and collaborate with each other. By outsourcing local data and immigrating expensive workloads to cloud service providers and fog nodes (FNs), resource-constrained devices can enjoy data services with low latency and minimal cost. To protect data security and privacy in the untrusted cloud-fog environment, many cryptographic mechanisms have been invented. Unfortunately, most of them are impractical when directly applied to cloud-fog IoT computing, mainly due to the large number of resource-constrained end-devices (EDs). In this paper, we present a secure cloud-fog IoT data sharing system with bilateral access control based on a new cryptographic tool called lightweight matchmaking encryption. Our system enforces both sender access control and receiver access control simultaneously and adapts to resource-constrained EDs by outsourcing costly workloads to FNs. We conduct extensive experiments to demonstrate the superior performance of our system to the most relevant solutions in the literature. |
---|