Discovering image-text associations for cross-media web information fusion
The diverse and distributed nature of the information published on the World Wide Web has made it difficult to collate and track information related to specific topics. Whereas most existing work on web information fusion has focused on multiple document summarization, this paper presents a novel ap...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2006
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6770 https://ink.library.smu.edu.sg/context/sis_research/article/7773/viewcontent/Jiang_Tan2006_Chapter_DiscoveringImage_TextAssociati.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | The diverse and distributed nature of the information published on the World Wide Web has made it difficult to collate and track information related to specific topics. Whereas most existing work on web information fusion has focused on multiple document summarization, this paper presents a novel approach for discovering associations between images and text segments, which subsequently can be used to support cross-media web content summarization. Specifically, we employ a similarity-based multilingual retrieval model and adopt a vague transformation technique for measuring the information similarity between visual features and textual features. The experimental results on a terrorist domain document set suggest that combining visual and textual features provides a promising approach to image and text fusion. |
---|