Topic-aware heterogeneous graph neural network for link prediction
Heterogeneous graphs (HGs), consisting of multiple types of nodes and links, can characterize a variety of real-world complex systems. Recently, heterogeneous graph neural networks (HGNNs), as a powerful graph embedding method to aggregate heterogeneous structure and attribute information, has earne...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2021
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6805 https://ink.library.smu.edu.sg/context/sis_research/article/7808/viewcontent/123.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Heterogeneous graphs (HGs), consisting of multiple types of nodes and links, can characterize a variety of real-world complex systems. Recently, heterogeneous graph neural networks (HGNNs), as a powerful graph embedding method to aggregate heterogeneous structure and attribute information, has earned a lot of attention. Despite the ability of HGNNs in capturing rich semantics which reveal different aspects of nodes, they still stay at a coarse-grained level which simply exploits structural characteristics. In fact, rich unstructured text content of nodes also carries latent but more fine-grained semantics arising from multi-facet topic-aware factors, which fundamentally manifest why nodes of different types would connect and form a specific heterogeneous structure. However, little effort has been devoted to factorizing them.In this paper, we propose a Topic-aware Heterogeneous Graph Neural Network, named THGNN, to hierarchically mine topic-aware semantics for learning multi-facet node representations for link prediction in HGs. Specifically, our model mainly applies an alternating two-step aggregation mechanism including intra-metapath decomposition and inter-metapath mergence, which can distinctively aggregate rich heterogeneous information according to the inferential topic-aware factors and preserve hierarchical semantics. Furthermore, a topic prior guidance module is also designed to keep the quality of multi-facet topic-aware embeddings relying on the global knowledge from unstructured text content in HGs. It helps to simultaneously improve both performance and interpretability. Experimental results on three real-world HGs demonstrate that our proposed model can effectively outperform the state-of-the-art methods in the link prediction task, and show the potential interpretability of learnt multi-facet topic-aware representations. |
---|