PriScore: blockchain-based self-tallying election system supporting score voting

Election and voting play crucial roles in democratic society for an elactorate to make a collective decision. E-voting is one of the most challenging problems in cryptographic research to provide multiple dimensions security assurances. In this paper, we study an important voting paradigm, score vot...

Full description

Saved in:
Bibliographic Details
Main Authors: YANG, Yang, GUAN, Zhangshuang, WAN, Zhiguo, WENG, Jian, PANG, Hwee Hwa, DENG, Robert H.
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2021
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/6817
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
id sg-smu-ink.sis_research-7820
record_format dspace
spelling sg-smu-ink.sis_research-78202022-01-27T03:48:03Z PriScore: blockchain-based self-tallying election system supporting score voting YANG, Yang GUAN, Zhangshuang WAN, Zhiguo WENG, Jian PANG, Hwee Hwa DENG, Robert H. Election and voting play crucial roles in democratic society for an elactorate to make a collective decision. E-voting is one of the most challenging problems in cryptographic research to provide multiple dimensions security assurances. In this paper, we study an important voting paradigm, score voting, with privacy protection, which has not been investigated in previous work. We propose a blockchain based self-tallying election system to support score voting, dubbed “PriScore”, where the ballots are recorded on blockchain to prevent vote forgery or tampering. PriScore makes it possible for each voter to assign different evaluation scores (within a certain range) for the candidates as ranked-choice, where the sum of the scores in each ballot should be a predefined constant, and the evaluation scores are encrypted to maintain confidentiality. A major challenge in score voting is to simultaneously prove two constraint conditions: range proof and sum proof. We introduce a new technique, called dual zero-knowledge proof (dual-ZKP), to prove the scores satisfying two crucial requirements, which integrates “1-out-of- K ” proof and distributed ElGamal crypto in a non-trivial way. The self-tallying mechanism in PriScore enables any party in the system to calculate and verify the election result, which provides fairness, dispute-freeness. The security analysis demonstrates that PriScore achieves completeness, soundness, eligibility, universal/individual verifiability and multiple-voting detection. We evaluate the performance of PriScore on modern workbench to test the performance, and also on a blockchain platform to measure the resource consumption. The experiments show that PriScore preserves privacy of score voting with reasonable overheads. 2021-09-01T07:00:00Z text https://ink.library.smu.edu.sg/sis_research/6817 info:doi/10.1109/TIFS.2021.3108494 Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Information Security
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic Information Security
spellingShingle Information Security
YANG, Yang
GUAN, Zhangshuang
WAN, Zhiguo
WENG, Jian
PANG, Hwee Hwa
DENG, Robert H.
PriScore: blockchain-based self-tallying election system supporting score voting
description Election and voting play crucial roles in democratic society for an elactorate to make a collective decision. E-voting is one of the most challenging problems in cryptographic research to provide multiple dimensions security assurances. In this paper, we study an important voting paradigm, score voting, with privacy protection, which has not been investigated in previous work. We propose a blockchain based self-tallying election system to support score voting, dubbed “PriScore”, where the ballots are recorded on blockchain to prevent vote forgery or tampering. PriScore makes it possible for each voter to assign different evaluation scores (within a certain range) for the candidates as ranked-choice, where the sum of the scores in each ballot should be a predefined constant, and the evaluation scores are encrypted to maintain confidentiality. A major challenge in score voting is to simultaneously prove two constraint conditions: range proof and sum proof. We introduce a new technique, called dual zero-knowledge proof (dual-ZKP), to prove the scores satisfying two crucial requirements, which integrates “1-out-of- K ” proof and distributed ElGamal crypto in a non-trivial way. The self-tallying mechanism in PriScore enables any party in the system to calculate and verify the election result, which provides fairness, dispute-freeness. The security analysis demonstrates that PriScore achieves completeness, soundness, eligibility, universal/individual verifiability and multiple-voting detection. We evaluate the performance of PriScore on modern workbench to test the performance, and also on a blockchain platform to measure the resource consumption. The experiments show that PriScore preserves privacy of score voting with reasonable overheads.
format text
author YANG, Yang
GUAN, Zhangshuang
WAN, Zhiguo
WENG, Jian
PANG, Hwee Hwa
DENG, Robert H.
author_facet YANG, Yang
GUAN, Zhangshuang
WAN, Zhiguo
WENG, Jian
PANG, Hwee Hwa
DENG, Robert H.
author_sort YANG, Yang
title PriScore: blockchain-based self-tallying election system supporting score voting
title_short PriScore: blockchain-based self-tallying election system supporting score voting
title_full PriScore: blockchain-based self-tallying election system supporting score voting
title_fullStr PriScore: blockchain-based self-tallying election system supporting score voting
title_full_unstemmed PriScore: blockchain-based self-tallying election system supporting score voting
title_sort priscore: blockchain-based self-tallying election system supporting score voting
publisher Institutional Knowledge at Singapore Management University
publishDate 2021
url https://ink.library.smu.edu.sg/sis_research/6817
_version_ 1770576074813472768