Self-organizing neural architecture for reinforcement learning

Self-organizing neural networks are typically associated with unsupervised learning. This paper presents a self-organizing neural architecture, known as TD-FALCON, that learns cognitive codes across multi-modal pattern spaces, involving sensory input, actions, and rewards, and is capable of adapting...

Full description

Saved in:
Bibliographic Details
Main Author: TAN, Ah-hwee
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2006
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/6833
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Self-organizing neural networks are typically associated with unsupervised learning. This paper presents a self-organizing neural architecture, known as TD-FALCON, that learns cognitive codes across multi-modal pattern spaces, involving sensory input, actions, and rewards, and is capable of adapting and functioning in a dynamic environment with external evaluative feedback signals. We present a case study of TD-FALCON on a mine avoidance and navigation cognitive task, and illustrate its performance by comparing with a state-of-the-art reinforcement learning approach based on gradient descent backpropagation algorithm