Semi-supervised hierarchical clustering for personalized web image organization
Existing efforts on web image organization usually transform the task into surrounding text clustering. However, Current text clustering algorithms do not address the problem of insufficient statistical information for image representation and noisy tags which greatly decreases the clustering perfor...
Saved in:
Main Authors: | MENG, Lei, TAN, Ah-hwee |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2012
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/6887 https://ink.library.smu.edu.sg/context/sis_research/article/7890/viewcontent/Semi_supervisedHierarchicalClusteringforPersonalizedWebImageOrganization.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Semi-supervised hierarchical clustering for personalized web image organization
由: Meng, Lei, et al.
出版: (2013) -
Semi-supervised domain adaptation with subspace learning for visual recognition
由: YAO, Ting, et al.
出版: (2015) -
Semi-supervised entity alignment via joint knowledge embedding model and cross-graph model
由: LI, Chengjiang, et al.
出版: (2019) -
MyLife: An online personal memory album
由: WANG, Di, et al.
出版: (2015) -
Automatic generation of semantic fields for annotating web images
由: WANG, Gang, et al.
出版: (2010)