Pre-training on large-scale heterogeneous graph
Graph neural networks (GNNs) emerge as the state-of-the-art representation learning methods on graphs and often rely on a large amount of labeled data to achieve satisfactory performance. Recently, in order to relieve the label scarcity issues, some works propose to pre-train GNNs in a self-supervis...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/6888 https://ink.library.smu.edu.sg/context/sis_research/article/7891/viewcontent/KDD21_PT_HGNN.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
كن أول من يترك تعليقا!