Contrastive pre-training of GNNs on heterogeneous graphs
While graph neural networks (GNNs) emerge as the state-of-the-art representation learning methods on graphs, they often require a large amount of labeled data to achieve satisfactory performance, which is often expensive or unavailable. To relieve the label scarcity issue, some pre-training strategi...
محفوظ في:
المؤلفون الرئيسيون: | JIANG, Xunqiang, LU, Yuanfu, FANG, Yuan, SHI, Chuan |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/6889 https://ink.library.smu.edu.sg/context/sis_research/article/7892/viewcontent/124.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Pre-training on large-scale heterogeneous graph
بواسطة: JIANG, Xunqiang, وآخرون
منشور في: (2021) -
Learning to pre-train graph neural networks
بواسطة: LU, Yuanfu, وآخرون
منشور في: (2021) -
Graphprompt: Unifying pre-training and downstream tasks for graph neural networks
بواسطة: LIU, Zemin, وآخرون
منشور في: (2023) -
Masked autoencoders for contrastive learning of heterogenous graphs
بواسطة: Srinthi Nachiyar D/O Thangamuthu
منشور في: (2024) -
Dynamic heterogeneous graph embedding via heterogeneous Hawkes process
بواسطة: JI, Yugang, وآخرون
منشور في: (2021)