Integrating knowledge compilation with reinforcement learning for routes
Sequential multiagent decision-making under partial observability and uncertainty poses several challenges. Although multiagent reinforcement learning (MARL) approaches have increased the scalability, addressing combinatorial domains is still challenging as random exploration by agents is unlikely t...
محفوظ في:
المؤلفون الرئيسيون: | LING, Jiajing, CHANDAK, Kushagra, KUMAR, Akshat |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/6898 https://ink.library.smu.edu.sg/context/sis_research/article/7901/viewcontent/Integrating_Knowledge_Compilation_with_Reinforcement_Learning_for_Routes.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Knowledge compilation for constrained combinatorial action spaces in reinforcement learning
بواسطة: LING, Jiajing, وآخرون
منشور في: (2023) -
Constrained multiagent reinforcement learning for large agent population
بواسطة: LING, Jiajing, وآخرون
منشور في: (2022) -
Approximate difference rewards for scalable multigent reinforcement learning
بواسطة: SINGH, Arambam James, وآخرون
منشور في: (2021) -
Ensemble-based deep reinforcement learning for vehicle routing problems under distribution shift
بواسطة: JIANG, Yuan, وآخرون
منشور في: (2023) -
Learning generalizable models for vehicle routing problems via knowledge distillation
بواسطة: BI, Jieyi, وآخرون
منشور في: (2022)