Need accurate user behaviour? Pay attention to groups

In this paper, we show that characterizing user behaviour from location or smartphone usage traces, without accounting for the interaction of individuals in physical-world groups, can lead to erroneous results. We conducted one of the largest studies in the UbiComp domain thus far, involving indoor...

全面介紹

Saved in:
書目詳細資料
Main Authors: JAYARAJAH, K., LEE, Y., MISRA, Archan, BALAN, R.
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2015
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/6915
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:In this paper, we show that characterizing user behaviour from location or smartphone usage traces, without accounting for the interaction of individuals in physical-world groups, can lead to erroneous results. We conducted one of the largest studies in the UbiComp domain thus far, involving indoor location traces of more than 6,000 users, collected over a 4-month period at our university campus, and further studied fine-grained App usage of a subset of 156 Android users. We apply a state-of-the-art group detection algorithm to annotate such location traces with group vs. individual context, and then show that individuals vs. groups exhibit significant differences along three behavioural traits: (1) the mobility pattern, (2) the responsiveness to calls / SMSs and (3) application usage. We show that these significant differences are robust to underlying errors in the group detection technique and that the use of such group context leads to behavioural results that differ from those reported in prior popular work.