Context-aware graph convolutional network for dynamic origin-destination prediction
A robust Origin-Destination (OD) prediction is key to urban mobility. A good forecasting model can reduce operational risks and improve service availability, among many other upsides. Here, we examine the use of Graph Convolutional Net-work (GCN) and its hybrid Markov-Chain (GCN-MC) variant to perfo...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2021
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6922 https://ink.library.smu.edu.sg/context/sis_research/article/7925/viewcontent/Paper__1_.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | A robust Origin-Destination (OD) prediction is key to urban mobility. A good forecasting model can reduce operational risks and improve service availability, among many other upsides. Here, we examine the use of Graph Convolutional Net-work (GCN) and its hybrid Markov-Chain (GCN-MC) variant to perform a context-aware OD prediction based on a large-scale public transportation dataset in Singapore. Compared with the baseline Markov-Chain algorithm and GCN, the proposed hybrid GCN-MC model improves the prediction accuracy by 37% and 12% respectively. Lastly, the addition of temporal and historical contextual information further improves the performance of the proposed hybrid model by 4 –12%. |
---|