EarGate: Gait-based user identification with in-ear microphones

Human gait is a widely used biometric trait for user identification and recognition. Given the wide-spreading, steady diffusion of earworn wearables (Earables) as the new frontier of wearable devices, we investigate the feasibility of earable-based gait identification. Specifically, we look at gait-...

Full description

Saved in:
Bibliographic Details
Main Authors: FERLINI, Andrea, MA, Dong, MASCOLO, Cecilia
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2021
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/6990
https://ink.library.smu.edu.sg/context/sis_research/article/7993/viewcontent/3447993.3483240.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Human gait is a widely used biometric trait for user identification and recognition. Given the wide-spreading, steady diffusion of earworn wearables (Earables) as the new frontier of wearable devices, we investigate the feasibility of earable-based gait identification. Specifically, we look at gait-based identification from the sounds induced by walking and propagated through the musculoskeletal system in the body. Our system, EarGate, leverages an in-ear facing microphone which exploits the earable’s occlusion effect to reliably detect the user’s gait from inside the ear canal, without impairing the general usage of earphones. With data collected from 31 subjects, we show that EarGate achieves up to 97.26% Balanced Accuracy (BAC) with very low False Acceptance Rate (FAR) and False Rejection Rate (FRR) of 3.23% and 2.25%, respectively. Further, our measurement of power consumption and latency investigates how this gait identification model could live both as a stand-alone or cloud-coupled earable system.