EnTrans: Leveraging kinetic energy harvesting signal for transportation mode detection
Monitoring the daily transportation modes of an individual provides useful information in many application domains, such as urban design, real-time journey recommendation, as well as providing location-based services. In existing systems, accelerometer and GPS are the dominantly used signal sources...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2019
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/7002 https://ink.library.smu.edu.sg/context/sis_research/article/8005/viewcontent/1807.02268.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-8005 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-80052022-03-17T15:15:19Z EnTrans: Leveraging kinetic energy harvesting signal for transportation mode detection LAN, Guohao XU, Weitao MA, Dong KHALIFA, Sara HASSAN, Mahbub HU, Wen Monitoring the daily transportation modes of an individual provides useful information in many application domains, such as urban design, real-time journey recommendation, as well as providing location-based services. In existing systems, accelerometer and GPS are the dominantly used signal sources for transportation context monitoring which drain out the limited battery life of the wearable devices very quickly. To resolve the high energy consumption issue, in this paper, we present EnTrans, which enables transportation mode detection by using only the kinetic energy harvester as an energy-efficient signal source. The proposed idea is based on the intuition that the vibrations experienced by the passenger during traveling with different transportation modes are distinctive. Thus, voltage signal generated by the energy harvesting devices should contain sufficient features to distinguish different transportation modes. We evaluate our system using over 28 hours of data, which is collected by eight individuals using a practical energy harvesting prototype. The evaluation results demonstrate that EnTrans is able to achieve an overall accuracy over 92% in classifying five different modes while saving more than 34% of the system power compared to conventional accelerometer-based approaches. 2019-06-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/7002 info:doi/10.1109/tits.2019.2918642 https://ink.library.smu.edu.sg/context/sis_research/article/8005/viewcontent/1807.02268.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Transportation mode detection energy harvesting wearable devices sparse representation Artificial Intelligence and Robotics Transportation |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Transportation mode detection energy harvesting wearable devices sparse representation Artificial Intelligence and Robotics Transportation |
spellingShingle |
Transportation mode detection energy harvesting wearable devices sparse representation Artificial Intelligence and Robotics Transportation LAN, Guohao XU, Weitao MA, Dong KHALIFA, Sara HASSAN, Mahbub HU, Wen EnTrans: Leveraging kinetic energy harvesting signal for transportation mode detection |
description |
Monitoring the daily transportation modes of an individual provides useful information in many application domains, such as urban design, real-time journey recommendation, as well as providing location-based services. In existing systems, accelerometer and GPS are the dominantly used signal sources for transportation context monitoring which drain out the limited battery life of the wearable devices very quickly. To resolve the high energy consumption issue, in this paper, we present EnTrans, which enables transportation mode detection by using only the kinetic energy harvester as an energy-efficient signal source. The proposed idea is based on the intuition that the vibrations experienced by the passenger during traveling with different transportation modes are distinctive. Thus, voltage signal generated by the energy harvesting devices should contain sufficient features to distinguish different transportation modes. We evaluate our system using over 28 hours of data, which is collected by eight individuals using a practical energy harvesting prototype. The evaluation results demonstrate that EnTrans is able to achieve an overall accuracy over 92% in classifying five different modes while saving more than 34% of the system power compared to conventional accelerometer-based approaches. |
format |
text |
author |
LAN, Guohao XU, Weitao MA, Dong KHALIFA, Sara HASSAN, Mahbub HU, Wen |
author_facet |
LAN, Guohao XU, Weitao MA, Dong KHALIFA, Sara HASSAN, Mahbub HU, Wen |
author_sort |
LAN, Guohao |
title |
EnTrans: Leveraging kinetic energy harvesting signal for transportation mode detection |
title_short |
EnTrans: Leveraging kinetic energy harvesting signal for transportation mode detection |
title_full |
EnTrans: Leveraging kinetic energy harvesting signal for transportation mode detection |
title_fullStr |
EnTrans: Leveraging kinetic energy harvesting signal for transportation mode detection |
title_full_unstemmed |
EnTrans: Leveraging kinetic energy harvesting signal for transportation mode detection |
title_sort |
entrans: leveraging kinetic energy harvesting signal for transportation mode detection |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2019 |
url |
https://ink.library.smu.edu.sg/sis_research/7002 https://ink.library.smu.edu.sg/context/sis_research/article/8005/viewcontent/1807.02268.pdf |
_version_ |
1770576185953091584 |