Pixel-wise energy-biased abstention learning for anomaly segmentation on complex urban driving scenes

State-of-the-art (SOTA) anomaly segmentation approaches on complex urban driving scenes explore pixel-wise classification uncertainty learned from outlier exposure, or external reconstruction models. However, previous uncertainty approaches that directly associate high uncertainty to anomaly may som...

全面介紹

Saved in:
書目詳細資料
Main Authors: TIAN, Yu, LIU, Yuyuan, PANG, Guansong, LIU, Fengbei, CHEN, Yuanhong, CARNEIRO, Gustavo
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2022
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/7058
https://ink.library.smu.edu.sg/context/sis_research/article/8061/viewcontent/2111.12264.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English