Coverage-guided fuzzing for feedforward neural networks
Deep neural network (DNN) has been widely applied to safety-critical scenarios such as autonomous vehicle, security surveillance, and cyber-physical control systems. Yet, the incorrect behaviors of DNNs can lead to severe accidents and tremendous losses due to hidden defects. In this paper, we prese...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2019
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/7067 https://ink.library.smu.edu.sg/context/sis_research/article/8070/viewcontent/ASE.2019.00127.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Deep neural network (DNN) has been widely applied to safety-critical scenarios such as autonomous vehicle, security surveillance, and cyber-physical control systems. Yet, the incorrect behaviors of DNNs can lead to severe accidents and tremendous losses due to hidden defects. In this paper, we present DeepHunter, a general-purpose fuzzing framework for detecting defects of DNNs. DeepHunter is inspired by traditional grey-box fuzzing and aims to increase the overall test coverage by applying adaptive heuristics according to runtime feedback. Specifically, DeepHunter provides a series of seed selection strategies, metamorphic mutation strategies, and testing criteria customized to DNN testing; all these components support multiple built-in configurations which are easy to extend. We evaluated DeepHunter on two popular datasets and the results demonstrate the effectiveness of DeepHunter in achieving coverage increase and detecting real defects. A video demonstration which showcases the main features of DeepHunter can be found at https://youtu.be/s5DfLErcgrc. |
---|