DeepMutation++: A mutation testing framework for deep learning systems
Deep neural networks (DNNs) are increasingly expanding their real-world applications across domains, e.g., image processing, speech recognition and natural language processing. However, there is still limited tool support for DNN testing in terms of test data quality and model robustness. In this pa...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2019
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/7071 https://ink.library.smu.edu.sg/context/sis_research/article/8074/viewcontent/ASE.2019.00126.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Deep neural networks (DNNs) are increasingly expanding their real-world applications across domains, e.g., image processing, speech recognition and natural language processing. However, there is still limited tool support for DNN testing in terms of test data quality and model robustness. In this paper, we introduce a mutation testing-based tool for DNNs, DeepMutation++, which facilitates the DNN quality evaluation, supporting both feed-forward neural networks (FNNs) and stateful recurrent neural networks (RNNs). It not only enables static analysis of the robustness of a DNN model against the input as a whole, but also allows the identification of the vulnerable segments of a sequential input (e.g. audio input) by runtime analysis. It is worth noting that DeepMutation++ specially features the support of RNNs mutation testing. The tool demo video can be found on the project website https://sites.google.com/view/deepmutationpp. |
---|