Stealthy and efficient adversarial attacks against deep reinforcement learning

Adversarial attacks against conventional Deep Learning (DL) systems and algorithms have been widely studied, and various defenses were proposed. However, the possibility and feasibility of such attacks against Deep Reinforcement Learning (DRL) are less explored. As DRL has achieved great success in...

Full description

Saved in:
Bibliographic Details
Main Authors: SUN, Jianwen, ZHANG, Tianwei, XIE, Xiaofei, MA, Lei, ZHENG, Yan, CHEN, Kangjie, LIU, Yang
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2020
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/7116
https://ink.library.smu.edu.sg/context/sis_research/article/8119/viewcontent/6047_Article_Text_9272_1_10_20200513.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
id sg-smu-ink.sis_research-8119
record_format dspace
spelling sg-smu-ink.sis_research-81192022-04-14T11:40:51Z Stealthy and efficient adversarial attacks against deep reinforcement learning SUN, Jianwen ZHANG, Tianwei XIE, Xiaofei MA, Lei ZHENG, Yan CHEN, Kangjie LIU, Yang Adversarial attacks against conventional Deep Learning (DL) systems and algorithms have been widely studied, and various defenses were proposed. However, the possibility and feasibility of such attacks against Deep Reinforcement Learning (DRL) are less explored. As DRL has achieved great success in various complex tasks, designing effective adversarial attacks is an indispensable prerequisite towards building robust DRL algorithms. In this paper, we introduce two novel adversarial attack techniques to stealthily and efficiently attack the DRL agents. These two techniques enable an adversary to inject adversarial samples in a minimal set of critical moments while causing the most severe damage to the agent. The first technique is the critical point attack: the adversary builds a model to predict the future environmental states and agent’s actions, assesses the damage of each possible attack strategy, and selects the optimal one. The second technique is the antagonist attack: the adversary automatically learns a domainagnostic model to discover the critical moments of attacking the agent in an episode. Experimental results demonstrate the effectiveness of our techniques. Specifically, to successfully attack the DRL agent, our critical point technique only requires 1 (TORCS) or 2 (Atari Pong and Breakout) steps, and the antagonist technique needs fewer than 5 steps (4 Mujoco tasks), which are significant improvements over state-of-theart methods. 2020-02-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/7116 https://ink.library.smu.edu.sg/context/sis_research/article/8119/viewcontent/6047_Article_Text_9272_1_10_20200513.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Software Engineering
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic Software Engineering
spellingShingle Software Engineering
SUN, Jianwen
ZHANG, Tianwei
XIE, Xiaofei
MA, Lei
ZHENG, Yan
CHEN, Kangjie
LIU, Yang
Stealthy and efficient adversarial attacks against deep reinforcement learning
description Adversarial attacks against conventional Deep Learning (DL) systems and algorithms have been widely studied, and various defenses were proposed. However, the possibility and feasibility of such attacks against Deep Reinforcement Learning (DRL) are less explored. As DRL has achieved great success in various complex tasks, designing effective adversarial attacks is an indispensable prerequisite towards building robust DRL algorithms. In this paper, we introduce two novel adversarial attack techniques to stealthily and efficiently attack the DRL agents. These two techniques enable an adversary to inject adversarial samples in a minimal set of critical moments while causing the most severe damage to the agent. The first technique is the critical point attack: the adversary builds a model to predict the future environmental states and agent’s actions, assesses the damage of each possible attack strategy, and selects the optimal one. The second technique is the antagonist attack: the adversary automatically learns a domainagnostic model to discover the critical moments of attacking the agent in an episode. Experimental results demonstrate the effectiveness of our techniques. Specifically, to successfully attack the DRL agent, our critical point technique only requires 1 (TORCS) or 2 (Atari Pong and Breakout) steps, and the antagonist technique needs fewer than 5 steps (4 Mujoco tasks), which are significant improvements over state-of-theart methods.
format text
author SUN, Jianwen
ZHANG, Tianwei
XIE, Xiaofei
MA, Lei
ZHENG, Yan
CHEN, Kangjie
LIU, Yang
author_facet SUN, Jianwen
ZHANG, Tianwei
XIE, Xiaofei
MA, Lei
ZHENG, Yan
CHEN, Kangjie
LIU, Yang
author_sort SUN, Jianwen
title Stealthy and efficient adversarial attacks against deep reinforcement learning
title_short Stealthy and efficient adversarial attacks against deep reinforcement learning
title_full Stealthy and efficient adversarial attacks against deep reinforcement learning
title_fullStr Stealthy and efficient adversarial attacks against deep reinforcement learning
title_full_unstemmed Stealthy and efficient adversarial attacks against deep reinforcement learning
title_sort stealthy and efficient adversarial attacks against deep reinforcement learning
publisher Institutional Knowledge at Singapore Management University
publishDate 2020
url https://ink.library.smu.edu.sg/sis_research/7116
https://ink.library.smu.edu.sg/context/sis_research/article/8119/viewcontent/6047_Article_Text_9272_1_10_20200513.pdf
_version_ 1770576215780884480