Urban perception: Sensing cities via a deep interactive multi-task learning framework

Social scientists have shown evidence that visual perceptions of urban attributes, such as safe, wealthy, and beautiful perspectives of the given cities, are highly correlated to the residents' behaviors and quality of life. Despite their significance, measuring visual perceptions of urban attr...

Full description

Saved in:
Bibliographic Details
Main Authors: GUAN, Weili, CHEN, Zhaozheng, FENG, Fuli, LIU, Weifeng, NIE, Liqiang
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2021
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/7150
https://ink.library.smu.edu.sg/context/sis_research/article/8153/viewcontent/3424115_pv.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Social scientists have shown evidence that visual perceptions of urban attributes, such as safe, wealthy, and beautiful perspectives of the given cities, are highly correlated to the residents' behaviors and quality of life. Despite their significance, measuring visual perceptions of urban attributes is challenging due to the following facts: (1) Visual perceptions are subjectively contradistinctive rather than absolute. (2) Perception comparisons between image pairs are usually conducted region by region, and highly related to the specific urban attributes. And (3) the urban attributes have both the shared and specific information. To address these problems, in this article, we present a Deep inteRActive Multi-task leArning scheme, DRAMA for short. DRAMA comparatively quantifies the perceptions of urban attributes by jointly integrating the pairwise comparisons, regional interactions, and urban attribute correlations within a unified deep scheme. In DRAMA, each urban attribute is treated as a task, whereby the task-sharing and the task-specific information is fully explored. By conducting extensive experiments over a public large-scale benchmark dataset, it is demonstrated that our proposed DRAMA scheme outperforms several state-of-the-art baselines. Meanwhile, we applied the pairwise comparisons of our DRAMA model to further quantify the urban attributes and hence rank cities with respect to the given urban attributes. As a byproduct, we have released the codes and parameter settings to facilitate other researches.