Improved generalisation bounds for deep learning through L∞ covering numbers
Using proof techniques involving L∞ covering numbers, we show generalisation error bounds for deep learning with two main improvements over the state of the art. First, our bounds have no explicit dependence on the number of classes except for logarithmic factors. This holds even when formulating th...
Saved in:
Main Authors: | , , |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2019
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/7211 https://ink.library.smu.edu.sg/context/sis_research/article/8214/viewcontent/85_wrshpnew.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
成為第一個發表評論!