Hu-Fu: Efficient and secure spatial queries over data federation

Data isolation has become an obstacle to scale up query processing over big data, since sharing raw data among data owners is often prohibitive due to security concerns. A promising solution is to perform secure queries over a federation of multiple data owners leveraging secure multi-party computat...

Full description

Saved in:
Bibliographic Details
Main Authors: TONG, Yongxin, PAN, Xuchen, ZENG, Yuxiang, SHI, Yexuan, XUE, Chunbo, ZHOU, Zimu, ZHANG, Xiaofei, CHEN, Lei, XU, Yi, XU, Ke, LV, Weifeng
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2022
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/7220
https://ink.library.smu.edu.sg/context/sis_research/article/8223/viewcontent/vldb22_tong.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Data isolation has become an obstacle to scale up query processing over big data, since sharing raw data among data owners is often prohibitive due to security concerns. A promising solution is to perform secure queries over a federation of multiple data owners leveraging secure multi-party computation (SMC) techniques, as evidenced by recent federation work over relational data. However, existing solutions are highly inefficient on spatial queries due to excessive secure distance operations for query processing and their usage of general-purpose SMC libraries for secure operation implementation. In this paper, we propose Hu-Fu, the first system for efficient and secure spatial query processing on a data federation. The idea is to decompose the secure processing of a spatial query into as many plaintext operations and as few secure operations as possible, where fewer secure operators are involved and all secure operators are implemented dedicatedly. As a working system, Hu-Fu supports not only query input in native SQL, but also heterogeneous spatial databases (e.g., PostGIS, Simba, GeoMesa, and SpatialHadoop) at the backend. Extensive experiments show that Hu-Fu usually outperforms the state-of-the-arts in running time and communication cost while guaranteeing security.