On measuring network robustness for weighted networks
Network robustness measures how well network structure is strong and healthy when it is under attack, such as vertices joining and leaving. It has been widely used in many applications, such as information diffusion, disease transmission, and network security. However, existing metrics, including no...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2022
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/7233 https://ink.library.smu.edu.sg/context/sis_research/article/8236/viewcontent/203423942_On_Measuring_Network_Robustness_for_Weighted_Networks.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-8236 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-82362022-09-02T06:08:06Z On measuring network robustness for weighted networks ZHENG, Jianbing GAO, Ming LIM, Ee-peng LO, David JIN, Cheqing ZHOU, Aoying Network robustness measures how well network structure is strong and healthy when it is under attack, such as vertices joining and leaving. It has been widely used in many applications, such as information diffusion, disease transmission, and network security. However, existing metrics, including node connectivity, edge connectivity, and graph expansion, can be suboptimal for measuring network robustness since they are inefficient to be computed and cannot directly apply to the weighted networks or disconnected networks. In this paper, we define the RR-energy as a new robustness measurement for weighted networks based on the method of spectral analysis. RR-energy can cope with disconnected networks and is efficient to compute with a time complexity of O(|V|+|E|)O(|V|+|E|), where V and E are sets of vertices and edges in the network, respectively. Our experiments illustrate the rationality and efficiency of computing RR-energy: (1) Removal of high degree vertices reduces network robustness more than that of random or small degree vertices; (2) it takes as little as 120 s to compute for a network with about 6M vertices and 33M edges. We can further detect events occurring in a dynamic Twitter network with about 130K users and discover interesting weekly tweeting trends by tracking changes to RR-energy. 2022-07-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/7233 info:doi/10.1007/s10115-022-01670-z https://ink.library.smu.edu.sg/context/sis_research/article/8236/viewcontent/203423942_On_Measuring_Network_Robustness_for_Weighted_Networks.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University 2-step commute probability Normalized Laplacian matrix R-energy Weighted network Databases and Information Systems Information Security |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
2-step commute probability Normalized Laplacian matrix R-energy Weighted network Databases and Information Systems Information Security |
spellingShingle |
2-step commute probability Normalized Laplacian matrix R-energy Weighted network Databases and Information Systems Information Security ZHENG, Jianbing GAO, Ming LIM, Ee-peng LO, David JIN, Cheqing ZHOU, Aoying On measuring network robustness for weighted networks |
description |
Network robustness measures how well network structure is strong and healthy when it is under attack, such as vertices joining and leaving. It has been widely used in many applications, such as information diffusion, disease transmission, and network security. However, existing metrics, including node connectivity, edge connectivity, and graph expansion, can be suboptimal for measuring network robustness since they are inefficient to be computed and cannot directly apply to the weighted networks or disconnected networks. In this paper, we define the RR-energy as a new robustness measurement for weighted networks based on the method of spectral analysis. RR-energy can cope with disconnected networks and is efficient to compute with a time complexity of O(|V|+|E|)O(|V|+|E|), where V and E are sets of vertices and edges in the network, respectively. Our experiments illustrate the rationality and efficiency of computing RR-energy: (1) Removal of high degree vertices reduces network robustness more than that of random or small degree vertices; (2) it takes as little as 120 s to compute for a network with about 6M vertices and 33M edges. We can further detect events occurring in a dynamic Twitter network with about 130K users and discover interesting weekly tweeting trends by tracking changes to RR-energy. |
format |
text |
author |
ZHENG, Jianbing GAO, Ming LIM, Ee-peng LO, David JIN, Cheqing ZHOU, Aoying |
author_facet |
ZHENG, Jianbing GAO, Ming LIM, Ee-peng LO, David JIN, Cheqing ZHOU, Aoying |
author_sort |
ZHENG, Jianbing |
title |
On measuring network robustness for weighted networks |
title_short |
On measuring network robustness for weighted networks |
title_full |
On measuring network robustness for weighted networks |
title_fullStr |
On measuring network robustness for weighted networks |
title_full_unstemmed |
On measuring network robustness for weighted networks |
title_sort |
on measuring network robustness for weighted networks |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2022 |
url |
https://ink.library.smu.edu.sg/sis_research/7233 https://ink.library.smu.edu.sg/context/sis_research/article/8236/viewcontent/203423942_On_Measuring_Network_Robustness_for_Weighted_Networks.pdf |
_version_ |
1770576287733121024 |