KGAT: Knowledge graph attention network for recommendation
To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2019
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/7287 https://ink.library.smu.edu.sg/context/sis_research/article/8290/viewcontent/3292500.3330989.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-8290 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-82902022-09-29T07:44:20Z KGAT: Knowledge graph attention network for recommendation WANG, Xiang HE, Xiangnan CAO, Yixin LIU, Meng CHUA, Tat-Seng To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations — which connect two items with one or multiple linked attributes — are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node’s neighbors (which can be users, items, or attributes) to refine the node’s embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit highorder relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM [11] and RippleNet [29]. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism. We release the codes and datasets at https://github. com/xiangwang1223/knowledge_graph_attention_network. 2019-08-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/7287 info:doi/10.1145/3292500.3330989 https://ink.library.smu.edu.sg/context/sis_research/article/8290/viewcontent/3292500.3330989.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Collaborative Filtering Recommendation Graph Neural Network Higher-order Connectivity Embedding Propagation Knowledge Graph Databases and Information Systems Graphics and Human Computer Interfaces OS and Networks |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Collaborative Filtering Recommendation Graph Neural Network Higher-order Connectivity Embedding Propagation Knowledge Graph Databases and Information Systems Graphics and Human Computer Interfaces OS and Networks |
spellingShingle |
Collaborative Filtering Recommendation Graph Neural Network Higher-order Connectivity Embedding Propagation Knowledge Graph Databases and Information Systems Graphics and Human Computer Interfaces OS and Networks WANG, Xiang HE, Xiangnan CAO, Yixin LIU, Meng CHUA, Tat-Seng KGAT: Knowledge graph attention network for recommendation |
description |
To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations — which connect two items with one or multiple linked attributes — are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node’s neighbors (which can be users, items, or attributes) to refine the node’s embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit highorder relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM [11] and RippleNet [29]. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism. We release the codes and datasets at https://github. com/xiangwang1223/knowledge_graph_attention_network. |
format |
text |
author |
WANG, Xiang HE, Xiangnan CAO, Yixin LIU, Meng CHUA, Tat-Seng |
author_facet |
WANG, Xiang HE, Xiangnan CAO, Yixin LIU, Meng CHUA, Tat-Seng |
author_sort |
WANG, Xiang |
title |
KGAT: Knowledge graph attention network for recommendation |
title_short |
KGAT: Knowledge graph attention network for recommendation |
title_full |
KGAT: Knowledge graph attention network for recommendation |
title_fullStr |
KGAT: Knowledge graph attention network for recommendation |
title_full_unstemmed |
KGAT: Knowledge graph attention network for recommendation |
title_sort |
kgat: knowledge graph attention network for recommendation |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2019 |
url |
https://ink.library.smu.edu.sg/sis_research/7287 https://ink.library.smu.edu.sg/context/sis_research/article/8290/viewcontent/3292500.3330989.pdf |
_version_ |
1770576304572203008 |