導出完成 — 

Locally varying distance transform for unsupervised visual anomaly detection

Unsupervised anomaly detection on image data is notoriously unstable. We believe this is because many classical anomaly detectors implicitly assume data is low dimensional. However, image data is always high dimensional. Images can be projected to a low dimensional embedding but such projections rel...

全面介紹

Saved in:
書目詳細資料
Main Authors: LIN, Wen-yan, LIU, Zhonghang, LIU, Siying
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2022
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/7310
https://ink.library.smu.edu.sg/context/sis_research/article/8313/viewcontent/1673.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English