TGDM: Target Guided Dynamic Mixup for cross-domain few-shot learning

Given sufficient training data on the source domain, cross-domain few-shot learning (CD-FSL) aims at recognizing new classes with a small number of labeled examples on the target domain. The key to addressing CD-FSL is to narrow the domain gap and transferring knowledge of a network trained on the s...

全面介紹

Saved in:
書目詳細資料
Main Authors: ZHUO, Linhai, FU, Yuqian, CHEN, Jingjing, CAO, Yixin, JIANG, Yu-Gang
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2022
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/7453
https://ink.library.smu.edu.sg/context/sis_research/article/8456/viewcontent/3503161.3548052.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:Given sufficient training data on the source domain, cross-domain few-shot learning (CD-FSL) aims at recognizing new classes with a small number of labeled examples on the target domain. The key to addressing CD-FSL is to narrow the domain gap and transferring knowledge of a network trained on the source domain to the target domain. To help knowledge transfer, this paper introduces an intermediate domain generated by mixing images in the source and the target domain. Specifically, to generate the optimal intermediate domain for different target data, we propose a novel target guided dynamic mixup (TGDM) framework that leverages the target data to guide the generation of mixed images via dynamic mixup. The proposed TGDM framework contains a Mixup-3T network for learning classifiers and a dynamic ratio generation network (DRGN) for learning the optimal mix ratio. To better transfer the knowledge, the proposed Mixup-3T network contains three branches with shared parameters for classifying classes in the source domain, target domain, and intermediate domain. To generate the optimal intermediate domain, the DRGN learns to generate an optimal mix ratio according to the performance on auxiliary target data. Then, the whole TGDM framework is trained via bi-level meta-learning so that TGDM can rectify itself to achieve optimal performance on target data. Extensive experimental results on several benchmark datasets verify the effectiveness of our method