Graph neural network with self-attention and multi-task learning for credit default risk prediction
We propose a graph neural network with self-attention and multi-task learning (SaM-GNN) to leverage the advantages of deep learning for credit default risk prediction. Our approach incorporates two parallel tasks based on shared intermediate vectors for input vector reconstruction and credit default...
Saved in:
Main Authors: | LI, Zihao, WANG, Xianzhi, YAO, Lina, CHEN, Yakun, XU, Guandong, LIM, Ee-peng |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2022
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/7515 https://ink.library.smu.edu.sg/context/sis_research/article/8518/viewcontent/_WISE_2022__SAGNN__Self_attention_Graph_Neural_Network_with_Multi_task_Learning_for_Credit_Risk_Prediction.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Credit default swaps and corporate innovation
由: Chang, Xin, et al.
出版: (2020) -
Feature division and fusion for multi-task dense prediction
由: Gao, Yuhan
出版: (2025) -
MultiGPrompt for multi-task pre-training and prompting on graphs
由: YU, Xingtong, et al.
出版: (2024) -
Essays on the information role of credit default swaps
由: CHENG, Hao
出版: (2018) -
What Explains Credit Default Swaps Bid-Ask Spread?
由: CHEN, Yaru
出版: (2007)