Open-set domain adaptation by deconfounding domain gaps
Open-Set Domain Adaptation (OSDA) aims to adapt the model trained on a source domain to the recognition tasks in a target domain while shielding any distractions caused by open-set classes, i.e., the classes “unknown” to the source model. Compared to standard DA, the key of OSDA lies in the separati...
Saved in:
Main Authors: | , , |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2023
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/7556 https://ink.library.smu.edu.sg/context/sis_research/article/8559/viewcontent/Open_Set_Domain_Adaptation_by_Deconfounding_Domain_Gaps__NeuroComputing_.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |