VLStereoSet: A study of stereotypical bias in pre-trained vision-language models

In this paper we study how to measure stereotypical bias in pre-trained vision-language models. We leverage a recently released text-only dataset, StereoSet, which covers a wide range of stereotypical bias, and extend it into a vision-language probing dataset called VLStereoSet to measure stereotypi...

Full description

Saved in:
Bibliographic Details
Main Authors: ZHOU, Kankan, LAI, Yibin, JIANG, Jing
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2022
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/7617
https://ink.library.smu.edu.sg/context/sis_research/article/8620/viewcontent/2022.aacl_main.40.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:In this paper we study how to measure stereotypical bias in pre-trained vision-language models. We leverage a recently released text-only dataset, StereoSet, which covers a wide range of stereotypical bias, and extend it into a vision-language probing dataset called VLStereoSet to measure stereotypical bias in vision-language models. We analyze the differences between text and image and propose a probing task that detects bias by evaluating a model’s tendency to pick stereotypical statements as captions for anti-stereotypical images. We further define several metrics to measure both a vision-language model’s overall stereotypical bias and its intra-modal and inter-modal bias. Experiments on six representative pre-trained vision-language models demonstrate that stereotypical biases clearly exist in most of these models and across all four bias categories, with gender bias slightly more evident. Further analysis using gender bias data and two vision-language models also suggest that both intra-modal and inter-modal bias exist.