A survey on ML4VIS: Applying machine learning advances to data visualization
Inspired by the great success of machine learning (ML), researchers have applied ML techniques to visualizations to achieve a better design, development, and evaluation of visualizations. This branch of studies, known as ML4VIS, is gaining increasing research attention in recent years. To successful...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2021
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/7670 https://ink.library.smu.edu.sg/context/sis_research/article/8673/viewcontent/2012.00467.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-8673 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-86732023-01-10T03:40:09Z A survey on ML4VIS: Applying machine learning advances to data visualization WANG, Qianwen CHEN, Zhutian WANG, Yong QU, Huamin Inspired by the great success of machine learning (ML), researchers have applied ML techniques to visualizations to achieve a better design, development, and evaluation of visualizations. This branch of studies, known as ML4VIS, is gaining increasing research attention in recent years. To successfully adapt ML techniques for visualizations, a structured understanding of the integration of ML4VIS is needed. In this article, we systematically survey 88 ML4VIS studies, aiming to answer two motivating questions: “what visualization processes can be assisted by ML?” and “how ML techniques can be used to solve visualization problems? ” This survey reveals seven main processes where the employment of ML techniques can benefit visualizations: Data Processing4VIS, Data-VIS Mapping, Insight Communication, Style Imitation, VIS Interaction, VIS Reading, and User Profiling . The seven processes are related to existing visualization theoretical models in an ML4VIS pipeline, aiming to illuminate the role of ML-assisted visualization in general visualizations. Meanwhile, the seven processes are mapped into main learning tasks in ML to align the capabilities of ML with the needs in visualization. Current practices and future opportunities of ML4VIS are discussed in the context of the ML4VIS pipeline and the ML-VIS mapping. While more studies are still needed in the area of ML4VIS, we hope this article can provide a stepping-stone for future exploration. A web-based interactive browser of this survey is available at https://ml4vis.github.io . 2021-08-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/7670 info:doi/10.1109/TVCG.2021.3106142 https://ink.library.smu.edu.sg/context/sis_research/article/8673/viewcontent/2012.00467.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University ML4VIS Machine Learning Data Visualization Survey Databases and Information Systems Graphics and Human Computer Interfaces |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
ML4VIS Machine Learning Data Visualization Survey Databases and Information Systems Graphics and Human Computer Interfaces |
spellingShingle |
ML4VIS Machine Learning Data Visualization Survey Databases and Information Systems Graphics and Human Computer Interfaces WANG, Qianwen CHEN, Zhutian WANG, Yong QU, Huamin A survey on ML4VIS: Applying machine learning advances to data visualization |
description |
Inspired by the great success of machine learning (ML), researchers have applied ML techniques to visualizations to achieve a better design, development, and evaluation of visualizations. This branch of studies, known as ML4VIS, is gaining increasing research attention in recent years. To successfully adapt ML techniques for visualizations, a structured understanding of the integration of ML4VIS is needed. In this article, we systematically survey 88 ML4VIS studies, aiming to answer two motivating questions: “what visualization processes can be assisted by ML?” and “how ML techniques can be used to solve visualization problems? ” This survey reveals seven main processes where the employment of ML techniques can benefit visualizations: Data Processing4VIS, Data-VIS Mapping, Insight Communication, Style Imitation, VIS Interaction, VIS Reading, and User Profiling . The seven processes are related to existing visualization theoretical models in an ML4VIS pipeline, aiming to illuminate the role of ML-assisted visualization in general visualizations. Meanwhile, the seven processes are mapped into main learning tasks in ML to align the capabilities of ML with the needs in visualization. Current practices and future opportunities of ML4VIS are discussed in the context of the ML4VIS pipeline and the ML-VIS mapping. While more studies are still needed in the area of ML4VIS, we hope this article can provide a stepping-stone for future exploration. A web-based interactive browser of this survey is available at https://ml4vis.github.io . |
format |
text |
author |
WANG, Qianwen CHEN, Zhutian WANG, Yong QU, Huamin |
author_facet |
WANG, Qianwen CHEN, Zhutian WANG, Yong QU, Huamin |
author_sort |
WANG, Qianwen |
title |
A survey on ML4VIS: Applying machine learning advances to data visualization |
title_short |
A survey on ML4VIS: Applying machine learning advances to data visualization |
title_full |
A survey on ML4VIS: Applying machine learning advances to data visualization |
title_fullStr |
A survey on ML4VIS: Applying machine learning advances to data visualization |
title_full_unstemmed |
A survey on ML4VIS: Applying machine learning advances to data visualization |
title_sort |
survey on ml4vis: applying machine learning advances to data visualization |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2021 |
url |
https://ink.library.smu.edu.sg/sis_research/7670 https://ink.library.smu.edu.sg/context/sis_research/article/8673/viewcontent/2012.00467.pdf |
_version_ |
1770576411395883008 |