Structured and natural responses co-generation for conversational search
Generating fluent and informative natural responses while main- taining representative internal states for search optimization is critical for conversational search systems. Existing approaches ei- ther 1) predict structured dialog acts first and then generate natural response; or 2) map conversatio...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2022
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/7720 https://ink.library.smu.edu.sg/context/sis_research/article/8723/viewcontent/Structured_and_natural_responses_co_generation_for_conversational_search.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Generating fluent and informative natural responses while main- taining representative internal states for search optimization is critical for conversational search systems. Existing approaches ei- ther 1) predict structured dialog acts first and then generate natural response; or 2) map conversation context to natural responses di- rectly in an end-to-end manner. Both kinds of approaches have shortcomings. The former suffers from error accumulation while the semantic associations between structured acts and natural re- sponses are confined in single direction. The latter emphasizes generating natural responses but fails to predict structured acts. Therefore, we propose a neural co-generation model that gener- ates the two concurrently. The key lies in a shared latent space shaped by two informed priors. Specifically, we design structured dialog acts and natural response auto-encoding as two auxiliary tasks in an interconnected network architecture. It allows for the concurrent generation and bidirectional semantic associations. The shared latent space also enables asynchronous reinforcement learn- ing for further joint optimization. Experiments show that our model achieves significant performance improvements. |
---|