Sample-efficient iterative lower bound optimization of deep reactive policies for planning in continuous MDPs

Recent advances in deep learning have enabled optimization of deep reactive policies (DRPs) for continuous MDP planning by encoding a parametric policy as a deep neural network and exploiting automatic differentiation in an end-toend model-based gradient descent framework. This approach has proven e...

全面介紹

Saved in:
書目詳細資料
Main Authors: LOW, Siow Meng, KUMAR, Akshat, SANNER, Scott
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2022
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/7724
https://ink.library.smu.edu.sg/context/sis_research/article/8727/viewcontent/21220_Article_Text_25233_1_2_20220628.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English

相似書籍