Spectral tensor train parameterization of deep learning layers
We study low-rank parameterizations of weight matrices with embedded spectral properties in the Deep Learning context. The low-rank property leads to parameter efficiency and permits taking computational shortcuts when computing mappings. Spectral properties are often subject to constraints in optim...
Saved in:
Main Authors: | , , , , , , |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2021
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/6259 https://ink.library.smu.edu.sg/context/sis_research/article/7262/viewcontent/Spectral_Tensor_Train_Parameterization_of_Deep_Learning_Layers.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |