Spectral tensor train parameterization of deep learning layers

We study low-rank parameterizations of weight matrices with embedded spectral properties in the Deep Learning context. The low-rank property leads to parameter efficiency and permits taking computational shortcuts when computing mappings. Spectral properties are often subject to constraints in optim...

Full description

Saved in:
Bibliographic Details
Main Authors: OBUKHOV, A., RAKHUBA, M., LINIGER, A., HUANG, Zhiwu, GEORGOULIS, S., DAI, D., VAN Gool L.
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2021
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/6259
https://ink.library.smu.edu.sg/context/sis_research/article/7262/viewcontent/Spectral_Tensor_Train_Parameterization_of_Deep_Learning_Layers.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:We study low-rank parameterizations of weight matrices with embedded spectral properties in the Deep Learning context. The low-rank property leads to parameter efficiency and permits taking computational shortcuts when computing mappings. Spectral properties are often subject to constraints in optimization problems, leading to better models and stability of optimization. We start by looking at the compact SVD parameterization of weight matrices and identifying redundancy sources in the parameterization. We further apply the Tensor Train (TT) decomposition to the compact SVD components, and propose a non-redundant differentiable parameterization of fixed TT-rank tensor manifolds, termed the Spectral Tensor Train Parameterization (STTP). We demonstrate the effects of neural network compression in the image classification setting, and both compression and improved training stability in the generative adversarial training setting.