Binary classifiers for noisy datasets: A comparative study of existing quantum machine learning frameworks and some new approaches

This technology offer is a quantum machine learning algorithm applied to binary classification models for noisy datasets which are prevalent in financial and other datasets. By combining hybrid-neural networks, quantum parametric circuits, and data re-uploading we have improved the classification of...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: SCHETAKIS, Nikolaos, AGHAMALYAN, Davit, GRIFFIN, Paul Robert, BOGUSLAVSKY, Michael
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2021
الموضوعات:
AI
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/7738
https://ink.library.smu.edu.sg/context/sis_research/article/8741/viewcontent/binary_classifiers_for_noisy_datasets_a_comparative_study_of_existing_quantum_machine_learning_frameworks_and_some_new_approaches.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English