Question-attentive review-level recommendation explanation

Recommendation explanations help to improve their acceptance by end users. The form of explanation of interest here is presenting an existing review of the recommended item. The challenge is in selecting a suitable review, which is customarily addressed by assessing the relative importance of each r...

Full description

Saved in:
Bibliographic Details
Main Authors: LE, Trung Hoang, LAUW, Hady Wirawan
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2022
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/7783
https://ink.library.smu.edu.sg/context/sis_research/article/8786/viewcontent/bigdata22a__1_.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Recommendation explanations help to improve their acceptance by end users. The form of explanation of interest here is presenting an existing review of the recommended item. The challenge is in selecting a suitable review, which is customarily addressed by assessing the relative importance of each review to the recommendation objective. Our focus is on improving review-level explanation by leveraging additional information in the form of questions and answers (QA). The proposed framework employs QA in an attention mechanism that aligns reviews to various QAs of an item and assesses their contribution jointly to the recommendation objective. The benefits are two-fold. For one, QA aids in selecting more useful reviews. For another, QA itself could accompany a well-aligned review in an expanded form of explanation. Experiments showcase the efficacies of our method as compared to baselines in identifying useful reviews and QAs, while maintaining parity in recommendation performance.