Concept-oriented transformers for visual sentiment analysis

In the richly multimedia Web, detecting sentiment signals expressed in images would support multiple applications, e.g., measuring customer satisfaction from online reviews, analyzing trends and opinions from social media. Given an image, visual sentiment analysis aims at recognizing positive or neg...

Full description

Saved in:
Bibliographic Details
Main Authors: TRUONG, Quoc Tuan, LAUW, Hady Wirawan
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2023
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/7799
https://ink.library.smu.edu.sg/context/sis_research/article/8802/viewcontent/wsdm23.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:In the richly multimedia Web, detecting sentiment signals expressed in images would support multiple applications, e.g., measuring customer satisfaction from online reviews, analyzing trends and opinions from social media. Given an image, visual sentiment analysis aims at recognizing positive or negative sentiment, and occasionally neutral sentiment as well. A nascent yet promising direction is Transformer-based models applied to image data, whereby Vision Transformer (ViT) establishes remarkable performance on largescale vision benchmarks. In addition to investigating the fitness of ViT for visual sentiment analysis, we further incorporate concept orientation into the self-attention mechanism, which is the core component of Transformer. The proposed model captures the relationships between image features and specific concepts. We conduct extensive experiments on Visual Sentiment Ontology (VSO) and Yelp.com online review datasets, showing that not only does the proposed model significantly improve upon the base model ViT in detecting visual sentiment but it also outperforms previous visual sentiment analysis models with narrowly-defined orientations. Additional analyses yield insightful results and better understanding of the concept-oriented self-attention mechanism.