Efficient image super-resolution integration
The super-resolution (SR) problem is challenging due to the diversity of image types with little shared properties as well as the speed required by online applications, e.g., target identification. In this paper, we explore the merits and demerits of recent deep learning-based and conventional patch...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2018
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/7855 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-8858 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-88582023-06-15T09:00:05Z Efficient image super-resolution integration XU, Ke WANG, Xin YANG, Xin HE, Shengfeng ZHANG, Qiang YIN, Baocai WEI, Xiaopeng LAU, Rynson W. H. The super-resolution (SR) problem is challenging due to the diversity of image types with little shared properties as well as the speed required by online applications, e.g., target identification. In this paper, we explore the merits and demerits of recent deep learning-based and conventional patch-based SR methods and show that they can be integrated in a complementary manner, while balancing the reconstruction quality and time cost. Motivated by this, we further propose an integration framework to take the results from FSRCNN and A+ methods as inputs and directly learn a pixel-wise mapping between the inputs and the reconstructed results using the Gaussian conditional random fields. The learned pixel-wise integration mapping is flexible to accommodate different upscaling factors. Experimental results show that the proposed framework can achieve superior SR performance compared with the state of the arts while being efficient. 2018-06-01T07:00:00Z text https://ink.library.smu.edu.sg/sis_research/7855 info:doi/10.1007/s00371-018-1554-2 Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Image super-resolution Image processing Gaussian conditional random fields Information Security |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Image super-resolution Image processing Gaussian conditional random fields Information Security |
spellingShingle |
Image super-resolution Image processing Gaussian conditional random fields Information Security XU, Ke WANG, Xin YANG, Xin HE, Shengfeng ZHANG, Qiang YIN, Baocai WEI, Xiaopeng LAU, Rynson W. H. Efficient image super-resolution integration |
description |
The super-resolution (SR) problem is challenging due to the diversity of image types with little shared properties as well as the speed required by online applications, e.g., target identification. In this paper, we explore the merits and demerits of recent deep learning-based and conventional patch-based SR methods and show that they can be integrated in a complementary manner, while balancing the reconstruction quality and time cost. Motivated by this, we further propose an integration framework to take the results from FSRCNN and A+ methods as inputs and directly learn a pixel-wise mapping between the inputs and the reconstructed results using the Gaussian conditional random fields. The learned pixel-wise integration mapping is flexible to accommodate different upscaling factors. Experimental results show that the proposed framework can achieve superior SR performance compared with the state of the arts while being efficient. |
format |
text |
author |
XU, Ke WANG, Xin YANG, Xin HE, Shengfeng ZHANG, Qiang YIN, Baocai WEI, Xiaopeng LAU, Rynson W. H. |
author_facet |
XU, Ke WANG, Xin YANG, Xin HE, Shengfeng ZHANG, Qiang YIN, Baocai WEI, Xiaopeng LAU, Rynson W. H. |
author_sort |
XU, Ke |
title |
Efficient image super-resolution integration |
title_short |
Efficient image super-resolution integration |
title_full |
Efficient image super-resolution integration |
title_fullStr |
Efficient image super-resolution integration |
title_full_unstemmed |
Efficient image super-resolution integration |
title_sort |
efficient image super-resolution integration |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2018 |
url |
https://ink.library.smu.edu.sg/sis_research/7855 |
_version_ |
1770576557138509824 |