Mask-guided deformation adaptive network for human parsing

Due to the challenges of densely compacted body parts, nonrigid clothing items, and severe overlap in crowd scenes, human parsing needs to focus more on multilevel feature representations compared to general scene parsing tasks. Based on this observation, we propose to introduce the auxiliary task o...

Full description

Saved in:
Bibliographic Details
Main Authors: MAO, Aihua, LIANG, Yuan, JIAO, Jianbo, LIU, Yongtuo, HE, Shengfeng
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2022
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/7873
https://ink.library.smu.edu.sg/context/sis_research/article/8876/viewcontent/3467889.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Due to the challenges of densely compacted body parts, nonrigid clothing items, and severe overlap in crowd scenes, human parsing needs to focus more on multilevel feature representations compared to general scene parsing tasks. Based on this observation, we propose to introduce the auxiliary task of human mask and edge detection to facilitate human parsing. Different from human parsing, which exploits the discriminative features of each category, human mask and edge detection emphasizes the boundaries of semantic parsing regions and the difference between foreground humans and background clutter, which benefits the parsing predictions of crowd scenes and small human parts. Specifically, we extract human mask and edge labels from the human parsing annotations and train a shared encoder with three independent decoders for the three mutually beneficial tasks. Furthermore, the decoder feature maps of the human mask prediction branch are further exploited as attention maps, indicating human regions to facilitate the decoding process of human parsing and human edge detection. In addition to these auxiliary tasks, we further alleviate the problem of deformed clothing items under various human poses by tracking the deformation patterns with the deformable convolution. Extensive experiments show that the proposed method can achieve superior performance against state-of-the-art methods on both single and multiple human parsing datasets. Codes and trained models are available https://github.com/ViktorLiang/MGDAN.