Real-time hierarchical supervoxel segmentation via a minimum spanning tree
Supervoxel segmentation algorithm has been applied as a preprocessing step for many vision tasks. However, existing supervoxel segmentation algorithms cannot generate hierarchical supervoxel segmentation well preserving the spatiotemporal boundaries in real time, which prevents the downstream applic...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2020
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/7878 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-8881 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-88812023-06-15T09:00:05Z Real-time hierarchical supervoxel segmentation via a minimum spanning tree WANG, Bo CHEN, Yiliang LIU, Wenxi QIN, Jing DU, Yong HAN, Guoqiang HE, Shengfeng Supervoxel segmentation algorithm has been applied as a preprocessing step for many vision tasks. However, existing supervoxel segmentation algorithms cannot generate hierarchical supervoxel segmentation well preserving the spatiotemporal boundaries in real time, which prevents the downstream applications from accurate and efficient processing. In this paper, we propose a real-time hierarchical supervoxel segmentation algorithm based on the minimum spanning tree (MST), which achieves state-of-the-art accuracy meanwhile at least 11x faster than existing methods. In particular, we present a dynamic graph updating operation into the iterative construction process of the MST, which can geometrically decrease the numbers of vertices and edges. In this way, the proposed method is able to generate arbitrary scales of supervoxels on the fly. We prove the efficiency of our algorithm that can produce hierarchical supervoxels in the time complexity of O(n), where n denotes the number of voxels in the input video. Quantitative and qualitative evaluations on public benchmarks demonstrate that our proposed algorithm significantly outperforms the state-ofthe-art algorithms in terms of supervoxel segmentation accuracy and computational efficiency. Furthermore, we demonstrate the effectiveness of the proposed method on a downstream application of video object segmentation. 2020-01-01T08:00:00Z text https://ink.library.smu.edu.sg/sis_research/7878 info:doi/10.1109/TIP.2020.3030502 Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Supervoxel video segmentation minimum spanning tree Information Security |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Supervoxel video segmentation minimum spanning tree Information Security |
spellingShingle |
Supervoxel video segmentation minimum spanning tree Information Security WANG, Bo CHEN, Yiliang LIU, Wenxi QIN, Jing DU, Yong HAN, Guoqiang HE, Shengfeng Real-time hierarchical supervoxel segmentation via a minimum spanning tree |
description |
Supervoxel segmentation algorithm has been applied as a preprocessing step for many vision tasks. However, existing supervoxel segmentation algorithms cannot generate hierarchical supervoxel segmentation well preserving the spatiotemporal boundaries in real time, which prevents the downstream applications from accurate and efficient processing. In this paper, we propose a real-time hierarchical supervoxel segmentation algorithm based on the minimum spanning tree (MST), which achieves state-of-the-art accuracy meanwhile at least 11x faster than existing methods. In particular, we present a dynamic graph updating operation into the iterative construction process of the MST, which can geometrically decrease the numbers of vertices and edges. In this way, the proposed method is able to generate arbitrary scales of supervoxels on the fly. We prove the efficiency of our algorithm that can produce hierarchical supervoxels in the time complexity of O(n), where n denotes the number of voxels in the input video. Quantitative and qualitative evaluations on public benchmarks demonstrate that our proposed algorithm significantly outperforms the state-ofthe-art algorithms in terms of supervoxel segmentation accuracy and computational efficiency. Furthermore, we demonstrate the effectiveness of the proposed method on a downstream application of video object segmentation. |
format |
text |
author |
WANG, Bo CHEN, Yiliang LIU, Wenxi QIN, Jing DU, Yong HAN, Guoqiang HE, Shengfeng |
author_facet |
WANG, Bo CHEN, Yiliang LIU, Wenxi QIN, Jing DU, Yong HAN, Guoqiang HE, Shengfeng |
author_sort |
WANG, Bo |
title |
Real-time hierarchical supervoxel segmentation via a minimum spanning tree |
title_short |
Real-time hierarchical supervoxel segmentation via a minimum spanning tree |
title_full |
Real-time hierarchical supervoxel segmentation via a minimum spanning tree |
title_fullStr |
Real-time hierarchical supervoxel segmentation via a minimum spanning tree |
title_full_unstemmed |
Real-time hierarchical supervoxel segmentation via a minimum spanning tree |
title_sort |
real-time hierarchical supervoxel segmentation via a minimum spanning tree |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2020 |
url |
https://ink.library.smu.edu.sg/sis_research/7878 |
_version_ |
1770576574742003712 |