PRI: PCH-based privacy-preserving with reusability and interoperability for enhancing blockchain scalability
Blockchain systems, one of the most popular distributed systems, are well-applied in various scenarios, e.g., logistics and finance. However, traditional blockchain systems suffer from scalability issues. To tackle this issue, Payment Channel Hubs (PCHs) are proposed. Recent efforts, such as A2L (SP...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2023
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/7926 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-8929 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-89292023-07-14T05:00:03Z PRI: PCH-based privacy-preserving with reusability and interoperability for enhancing blockchain scalability LI, Yuxian WENG, Jian WU, Wei LI, Ming LI, Yingjiu TU, Haoxin WU, Yongdong DENG, Robert H., Blockchain systems, one of the most popular distributed systems, are well-applied in various scenarios, e.g., logistics and finance. However, traditional blockchain systems suffer from scalability issues. To tackle this issue, Payment Channel Hubs (PCHs) are proposed. Recent efforts, such as A2L (SP'21) and Teechain (SOSP'19), enhance the privacy, reusability, and interoperability properties of PCHs. Nevertheless, these solutions have intrinsic limitations: they rely on trusted hardware or suffer from the deposit lock-in problem. Furthermore, the functionalities of some of these solutions are restricted to fixed-amount payments and do not support multi-party participation. These aforementioned problems limit their capabilities to alleviate blockchain scalability issues. In this paper, we propose PRI, a novel PCH solution that simultaneously guarantees transaction Privacy (i.e., relationship unlinkability and value confidentiality), deposit Reusability, and blockchain Interoperability, which can mitigate the aforementioned problems. PRI is constructed by several new building blocks, including (1) an atomic deposit protocol that enforces user and hub to deposit equivalent assets in a shared address for building a fair payment channel; (2) a privacy-preserving deposit certification scheme that leverages the Pointcheval and Sanders signature and non-interactive zero-knowledge proof to resolve the deposit lock-in issue in maintaining payment channels; (3) a range proof which ensures the legality and confidentiality of transaction values. We conduct extensive experimental evaluations of PRI, demonstrating that it improves the state-of-the-art approaches in terms of performance. 2023-10-01T07:00:00Z text https://ink.library.smu.edu.sg/sis_research/7926 info:doi/10.1016/j.jpdc.2023.104721 Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Blockchain Interoperability Reusability Scalability E-Commerce Finance and Financial Management Information Security |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Blockchain Interoperability Reusability Scalability E-Commerce Finance and Financial Management Information Security |
spellingShingle |
Blockchain Interoperability Reusability Scalability E-Commerce Finance and Financial Management Information Security LI, Yuxian WENG, Jian WU, Wei LI, Ming LI, Yingjiu TU, Haoxin WU, Yongdong DENG, Robert H., PRI: PCH-based privacy-preserving with reusability and interoperability for enhancing blockchain scalability |
description |
Blockchain systems, one of the most popular distributed systems, are well-applied in various scenarios, e.g., logistics and finance. However, traditional blockchain systems suffer from scalability issues. To tackle this issue, Payment Channel Hubs (PCHs) are proposed. Recent efforts, such as A2L (SP'21) and Teechain (SOSP'19), enhance the privacy, reusability, and interoperability properties of PCHs. Nevertheless, these solutions have intrinsic limitations: they rely on trusted hardware or suffer from the deposit lock-in problem. Furthermore, the functionalities of some of these solutions are restricted to fixed-amount payments and do not support multi-party participation. These aforementioned problems limit their capabilities to alleviate blockchain scalability issues. In this paper, we propose PRI, a novel PCH solution that simultaneously guarantees transaction Privacy (i.e., relationship unlinkability and value confidentiality), deposit Reusability, and blockchain Interoperability, which can mitigate the aforementioned problems. PRI is constructed by several new building blocks, including (1) an atomic deposit protocol that enforces user and hub to deposit equivalent assets in a shared address for building a fair payment channel; (2) a privacy-preserving deposit certification scheme that leverages the Pointcheval and Sanders signature and non-interactive zero-knowledge proof to resolve the deposit lock-in issue in maintaining payment channels; (3) a range proof which ensures the legality and confidentiality of transaction values. We conduct extensive experimental evaluations of PRI, demonstrating that it improves the state-of-the-art approaches in terms of performance. |
format |
text |
author |
LI, Yuxian WENG, Jian WU, Wei LI, Ming LI, Yingjiu TU, Haoxin WU, Yongdong DENG, Robert H., |
author_facet |
LI, Yuxian WENG, Jian WU, Wei LI, Ming LI, Yingjiu TU, Haoxin WU, Yongdong DENG, Robert H., |
author_sort |
LI, Yuxian |
title |
PRI: PCH-based privacy-preserving with reusability and interoperability for enhancing blockchain scalability |
title_short |
PRI: PCH-based privacy-preserving with reusability and interoperability for enhancing blockchain scalability |
title_full |
PRI: PCH-based privacy-preserving with reusability and interoperability for enhancing blockchain scalability |
title_fullStr |
PRI: PCH-based privacy-preserving with reusability and interoperability for enhancing blockchain scalability |
title_full_unstemmed |
PRI: PCH-based privacy-preserving with reusability and interoperability for enhancing blockchain scalability |
title_sort |
pri: pch-based privacy-preserving with reusability and interoperability for enhancing blockchain scalability |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2023 |
url |
https://ink.library.smu.edu.sg/sis_research/7926 |
_version_ |
1772829240791662592 |