Extracting class activation maps from non-discriminative features as well

Extracting class activation maps (CAM) from a classification model often results in poor coverage on foreground objects, i.e., only the discriminative region (e.g., the “head” of “sheep”) is recognized and the rest (e.g., the “leg” of “sheep”) mistakenly as background. The crux behind is that the we...

Full description

Saved in:
Bibliographic Details
Main Authors: CHEN, Zhaozheng, SUN, Qianru
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2023
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/8056
https://ink.library.smu.edu.sg/context/sis_research/article/9059/viewcontent/Chen_Extracting_Class_Activation_Maps_From_Non_Discriminative_Features_As_Well_CVPR_2023_paper.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Extracting class activation maps (CAM) from a classification model often results in poor coverage on foreground objects, i.e., only the discriminative region (e.g., the “head” of “sheep”) is recognized and the rest (e.g., the “leg” of “sheep”) mistakenly as background. The crux behind is that the weight of the classifier (used to compute CAM) captures only the discriminative features of objects. We tackle this by introducing a new computation method for CAM that explicitly captures non-discriminative features as well, thereby expanding CAM to cover whole objects. Specifically, we omit the last pooling layer of the classification model, and perform clustering on all local features of an object class, where “local” means “at a spatial pixel position”. We call the resultant K cluster centers local prototypes - represent local semantics like the “head”, “leg”, and “body” of “sheep”. Given a new image of the class, we compare its unpooled features to every prototype, derive K similarity matrices, and then aggregate them into a heatmap (i.e., our CAM). Our CAM thus captures all local features of the class without discrimination. We evaluate it in the challenging tasks of weakly-supervised semantic segmentation (WSSS), and plug it in multiple state-of-the-art WSSS methods, such as MCTformer and AMN, by simply replacing their original CAM with ours. Our extensive experiments on standard WSSS benchmarks (PASCAL VOC and MS COCO) show the superiority of our method: consistent improvements with little computational overhead.