Learning to dispatch for job shop scheduling via deep reinforcement learning
Priority dispatching rule (PDR) is widely used for solving real-world Job-shop scheduling problem (JSSP). However, the design of effective PDRs is a tedious task, requiring a myriad of specialized knowledge and often delivering limited performance. In this paper, we propose to automatically learn PD...
محفوظ في:
المؤلفون الرئيسيون: | ZHANG, Cong, SONG, Wen, CAO, Zhiguang, ZHANG, Jie, TAN, Puay Siew, CHI, Xu |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/8133 https://ink.library.smu.edu.sg/context/sis_research/article/9136/viewcontent/NeurIPS_2020_learning_to_dispatch_for_job_shop_scheduling_via_deep_reinforcement_learning_Paper.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Deep reinforcement learning guided improvement heuristic for job shop scheduling
بواسطة: ZHANG, Cong, وآخرون
منشور في: (2024) -
Flexible job-shop scheduling via graph neural network and deep reinforcement learning
بواسطة: SONG, Wen, وآخرون
منشور في: (2023) -
Intelligent job shop scheduling via deep reinforcement learning over graphs
بواسطة: Zhang, Cong
منشور في: (2023) -
Learning iterative dispatching rules for job shop scheduling with genetic programming
بواسطة: Nguyen, S., وآخرون
منشور في: (2014) -
Dynamic job shop scheduling using deep reinforcement learning
بواسطة: Tan, Hong Ming
منشور في: (2024)