Learning scenario representation for solving two-stage stochastic integer programs

Many practical combinatorial optimization problems under uncertainty can be modeled as stochastic integer programs (SIPs), which are extremely challenging to solve due to the high complexity. To solve two-stage SIPs efficiently, we propose a conditional variational autoencoder (CVAE) based method to...

Full description

Saved in:
Bibliographic Details
Main Authors: WU, Yaoxin, SONG, Wen, CAO, Zhiguang, ZHANG, Jie
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2022
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/8163
https://ink.library.smu.edu.sg/context/sis_research/article/9166/viewcontent/LEARNING_SCENARIO_REPRESENTATION_FOR_SOLVING_TWO_STAGE_STOCHASTIC_INTEGER_PROGRAMS.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Many practical combinatorial optimization problems under uncertainty can be modeled as stochastic integer programs (SIPs), which are extremely challenging to solve due to the high complexity. To solve two-stage SIPs efficiently, we propose a conditional variational autoencoder (CVAE) based method to learn scenario representation for a class of SIP instances. Specifically, we design a graph convolutional network based encoder to embed each scenario with the deterministic part of its instance (i.e. context) into a low-dimensional latent space, from which a decoder reconstructs the scenario from its latent representation conditioned on the context. Such a design effectively captures the dependencies of the scenarios on their corresponding instances. We apply the trained encoder to two tasks in typical SIP solving, i.e. scenario reduction and objective prediction. Experiments on two graph-based SIPs show that the learned representation significantly boosts the solving performance to attain high-quality solutions in short computational time, and generalizes fairly well to problems of larger sizes or with more scenarios.