On generalized degree fairness in graph neural networks
Conventional graph neural networks (GNNs) are often confronted with fairness issues that may stem from their input, including node attributes and neighbors surrounding a node. While several recent approaches have been proposed to eliminate the bias rooted in sensitive attributes, they ignore the oth...
محفوظ في:
المؤلفون الرئيسيون: | LIU, Zemin, NGUYEN, Trung Kien, FANG, Yuan |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/8189 https://ink.library.smu.edu.sg/context/sis_research/article/9192/viewcontent/AAAI23_DegFairGNN.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
A learned generalized geodesic distance function-based approach for node feature augmentation on graphs
بواسطة: AZAD, Amitoz, وآخرون
منشور في: (2024) -
Meta-inductive node classification across graphs
بواسطة: WEN, Zhihao, وآخرون
منشور في: (2021) -
TOWARD EFFECTIVE NEURAL NETWORKS ON GRAPH DATA
بواسطة: WANG YIWEI
منشور في: (2023) -
LEARNING ON GRAPHS
بواسطة: FENG FULI
منشور في: (2019) -
Mobility-aware reassociation control in wireless Mesh Networks
بواسطة: Yu, J., وآخرون
منشور في: (2014)