Link prediction on latent heterogeneous graphs
On graph data, the multitude of node or edge types gives rise to heterogeneous information networks (HINs). To preserve the heterogeneous semantics on HINs, the rich node/edge types become a cornerstone of HIN representation learning. However, in real-world scenarios, type information is often noisy...
Saved in:
Main Authors: | NGUYEN, Trung Kien, LIU, Zemin, FANG, Yuan |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2023
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/8190 https://ink.library.smu.edu.sg/context/sis_research/article/9193/viewcontent/3543507.3583284_pvoa_cc_by.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Topic-aware heterogeneous graph neural network for link prediction
由: XU, Siyong, et al.
出版: (2021) -
The 4th workshop on heterogeneous information network analysis and applications (HENA 2021)
由: SHI, Chuan, et al.
出版: (2021) -
Learning on heterogeneous graphs using high-order relations
由: Lee, See Hian, et al.
出版: (2021) -
Dynamic meta-path guided temporal heterogeneous graph neural networks
由: JI, Yugang, et al.
出版: (2024) -
Heterogeneous graph neural network with multi-view representation learning
由: SHAO, Zezhi, et al.
出版: (2023)